일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- rs485
- oracle
- Python
- 윈도우10
- 딥러닝
- matplot
- PYTHON MSSQL
- Visual Studio Code
- tensorflow
- MSSQL PYTHON
- 텐서플로우
- vscode
- 티스토리 초대장
- 오라클
- django
- Serial
- sql developer
- 크롤링
- MSSQL
- 자본주의
- MX Component
- scrapy
- 파이썬
- MEAN Stack
- pymssql
- windows10
- M2M
- rs422
- 장고
- c#
Archives
- Today
- Total
안까먹을라고 쓰는 블로그
TensorFlow 함수정리 본문
반응형
#SoftMax
import tensorflow as tf
import numpy as np
# a = np.array([0.3, 2.9, 4.0])
a = np.array([1.2, 0.9, 0.4])
exp_a = np.exp(a)
print(exp_a) # [ 1.34985881 18.17414537 54.59815003]
sum_exp_a = np.sum(exp_a)
print(sum_exp_a) # 74.1221542101633
y = exp_a / sum_exp_a
print(y) # [0.01821127 0.24519181 0.73659691]
=========================================================================
[3.32011692 2.45960311 1.4918247 ]
7.271544731534767
[0.45659032 0.33825043 0.20515925]
import tensorflow as tf
import numpy as np
a = np.array([[0, 1, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6]])
print(a)
print(a.ndim)
print(a.shape)
===========================================================================
[[0 1 2 3 4 5 6]
[0 1 2 3 4 5 6]]
2
(2, 7)
b = np.array([[[1,2,3],
[4,5,6],
[7,8,9],
[10,11,12]]])
print(b)
print(b.ndim)
print(b.shape)
===========================================================================
[[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]]
3
(1, 4, 3)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
d = tf.constant([[1.,2.], [3.,4.]])
print(sess.run(tf.shape(d)))
===========================================================================
[2 2]
e = tf.constant([[
[
[1,2,3,4],
[5,6,7,8],
[9,10,11,12]
],
[
[13,14,15,16],
[17,18,19,20],
[21,22,23,24]
]
]])
print(e.shape)
===========================================================================
(1, 2, 3, 4)
# reduce_mean
# 평균값을 구해준다.
print('=====d=====')
print(sess.run(d))
print(sess.run(tf.reduce_mean(d)))
print(sess.run(tf.reduce_mean(d, axis = 0)))
print(sess.run(tf.reduce_mean(d, axis = 1)))
print('0=====e=====')
print(sess.run(tf.reduce_mean(e, axis = 0)))
print('1=====e=====')
print(sess.run(tf.reduce_mean(e, axis = 1)))
print('2=====e=====')
print(sess.run(tf.reduce_mean(e, axis = 2)))
print('3=====e=====')
print(sess.run(tf.reduce_mean(e, axis = 3)))
===========================================================================
=====d=====
[[1. 2.]
[3. 4.]]
2.5
[2. 3.]
[1.5 3.5]
0=====e=====
[[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
[[13 14 15 16]
[17 18 19 20]
[21 22 23 24]]]
1=====e=====
[[[ 7 8 9 10]
[11 12 13 14]
[15 16 17 18]]]
2=====e=====
[[[ 5 6 7 8]
[17 18 19 20]]]
3=====e=====
[[[ 2 6 10]
[14 18 22]]]
# reshape(대상, 형태)
# 형변환 - 배열차수를 변경한다
g = tf.constant([[[0, 1, 2],
[3, 4, 5]],
[[6, 7, 8],
[9, 10, 11]]])
print('-g-----------------')
print(sess.run(tf.shape(g)))
print('\r\n-h1-----------------')
h = tf.reshape(g, shape = [-1, 3])
print(sess.run(h))
print(h.shape)
print('\r\n-h2-----------------')
h2 = tf.reshape(g, shape = [-1, 1, 3])
print(sess.run(h2))
print(h2.shape)
===========================================================================
-g-----------------
[2 2 3]
-h1-----------------
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
(4, 3)
-h2-----------------
[[[ 0 1 2]]
[[ 3 4 5]]
[[ 6 7 8]]
[[ 9 10 11]]]
(4, 1, 3)
# argmax(대상, axis = )
# 가장 높은 수의 인덱스를 반환한다.
j = tf.constant([[0,1,2],
[2,1,0],
[0,1,2],
[1,2,0]])
print(sess.run(tf.argmax(j)))
print(sess.run(tf.argmax(j, axis = 0)))
print(sess.run(tf.argmax(j, axis = 1))) # 얘를 많이 쓴다
===========================================================================
[1 3 0]
[1 3 0]
[2 0 2 1]
# one_hot(대상, depth = )
# reshape 와 반대개념으로 배열차수를 늘려준다.
print('\r\n-k-----------------')
k = tf.constant([[0], [1], [2], [0]])
print(sess.run(k))
print(k.shape)
print('\r\n-m-----------------')
m = tf.one_hot(k, depth = 3)
print(sess.run(m))
print(m.shape)
print('\r\n-n-----------------')
n = tf.one_hot(k, depth = 4)
print(sess.run(n))
print(n.shape)
print('\r\n-o-----------------')
o = tf.reshape(m, shape = [-1, 3])
print(sess.run(o))
print(o.shape)
===========================================================================
-k-----------------
[[0]
[1]
[2]
[0]]
(4, 1)
-m-----------------
[[[1. 0. 0.]]
[[0. 1. 0.]]
[[0. 0. 1.]]
[[1. 0. 0.]]]
(4, 1, 3)
-n-----------------
[[[1. 0. 0. 0.]]
[[0. 1. 0. 0.]]
[[0. 0. 1. 0.]]
[[1. 0. 0. 0.]]]
(4, 1, 4)
-o-----------------
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]
[1. 0. 0.]]
(4, 3)
# cast[대상, 타입]
# 형 변환 함수
p = tf.constant([True, False, 1 == 0, 1 == 1])
print(sess.run(p))
print(sess.run(tf.cast(p, tf.int32)))
===========================================================================
[ True False False True]
[1 0 0 1]
반응형
'Language > Python' 카테고리의 다른 글
Python & 딥러닝 (0) | 2019.11.25 |
---|---|
[Python과 텐서플로우를 활용한 딥러닝 기본 향상과정] 5일차 (0) | 2019.11.09 |
[Python과 텐서플로우를 활용한 딥러닝 기본 향상과정] 4일차 - Source (0) | 2019.11.02 |
[Python과 텐서플로우를 활용한 딥러닝 기본 향상과정] 4일차 (0) | 2019.11.02 |
[Python과 텐서플로우를 활용한 딥러닝 기본 향상과정] 3일차 (0) | 2019.10.26 |
Comments